

Emerging platforms in a new information era

Justin Brooks
System Applications Engineer
Tampa, FL | May 5, 2015

UAV Technological Timeline

1980's – RPV (Remotely Piloted Vehicle)

Operator on ground, almost near real-time control of aircraft.

1990's – UAV (Unmanned Aerial Vehicle)

 Functional flight control systems. Operator on ground takes over intermittently as necessary for course correction.

2005+ - UAS (Unmanned Aerial Systems)

• Complete flight path automation. Operator on ground can modify flight path or take over in emergencies.

UAV's – Effective New Tool Changing the Landscape of Aerial Surveying and Data Acquisition

- UAS will never replace fully piloted aircraft.
- UAS size = small = decreased radar, acoustical, infrared and environmental signatures.
- UAS is cost effective, as compared to fully manned aircraft (cheaper fuel costs, no crew downtime, minimal aircraft maintenance, no aircrew, minimal weight, easy mobility).
- Safety is improved due to both piloted and autonomous flight.

Advantages of each type of UAV's

Multi-Rotors

- Complexity of system design has increased and developed over recent years.
- Lighter and stronger materials and components
- Multi-rotor components readily available
- No need for a runway
- Vertical take off
- Hovering in place
- Low altitude flight

Fixed Wing

- Ability to stay airborne is not a function of the drive motor
- Less overall power consumption per flight.
- Stable in flight
- Robust
- Can survey farther distances
- Good payload capability
- Single motor operation

Helicopter UAV

- Highly maneuverable
- Great placement of sensor payload
- Single motor operation
- Vertical take off
- Hovering in place
- Low altitude flight
- No need for a runway

Advantages of Echo Digitization and Waveform Analysis

Interaction of Laser Pulse with Target

- » High multi-target resolution
- » High accuracy of multi-target echoes
- » Pulse width estimation
- » Enables radiometric calibration
- » Excellent penetration of vegetation
- » Accurate digital elevation map
- » Improves classification process
- » Remote control and autonomous operation capability

3

Benefits to LiDAR Integrated UAV's

- New technology allows for LiDAR acquisition at a fraction of the current aerial surveying aircraft costs.
- Small form factor allows for easy mobilization to site and thus, more remote sites.
- Easy mobilization and lower operational costs, as well as time saved, results in a faster return on investment for the LiDAR/UAV remote sensing.
- Faster deployment for repeat scans of an AOI
- Expands LiDAR to new and novel applications currently in use with UAV's.

UAS: RiCOPTER w/VUX-SYS Components

UAS: RiCOPTER w/VUX-SYS in action

UAS: RiCOPTER w/VUX-SYS in action

UAS: RiCOPTER w/VUX-SYS Portability

UAS: RiCOPTER Key Facts

Main Dimensions arms folded (for transportation & storage) arms unfolded (ready to fly)	624mm x 986mm x 470mm 1,920mm x 1,820mm x 470mm
MTOM (Maximum Take-Off Mass)	< 25 kg
Max. Payload (batteries & sensors)	up to 16 kg
Max. Operating Flight Altitude AGL	> 500 ft operational limits for civil unmanned circroft ac- cording to national regulations to be observed
Flight Endurance (with max. payload)	> 30 min.
Transportation Case (dimensions)	1,220mm x 810mm x 540mm

 $Source: \ http://www.riegl.com/uploads/tx_pxpriegldownloads/RiCOPTER_at_a_glance_2014-10-29.pdf$

- Robust and reliable airborne scanner carrying platform
- Full mechanical and electrical integration of sensor system components into aircraft fuselage
- Carbon Fiber main frame, foldable propeller carrier arms and shock absorbing undercarriage enable stable flight, safe landings and handy transportation
- Coaxial array of 4x2 propellers enhancing flight stability and failure safety while reducing overall weight

UAS: RiCOPTER w/VUX-SYS Components

RIEGL VUX-SYS Workflow

RIEGL VUX-SYS remote control setup

RIEGL VUX-SYS conventional control setup

RIEGL VUX-SYS Key Facts

System Components	 RIEGL VUX-1 UAS LiDAR sensor IMU/GNSS unit with antenna control unit up to 4 cameras (optional)
RIEGL VUX-1 Scanner Performance when integrated in RiCOPTER Field of View (FOV) max. effective measurement rate max. range @ target reflectivity 20 % minimum range range accuracy eye safety class according to IEC60825-1:2007	230° up to 350,000 meas./sec 550 m 3 m 10 mm Laser Class 1
IMU/GNSS Unit accuracy Roll, Pitch / accuracy Heading IMU sampling rate position accuracy (typ.) Camera Interfaces	0.015° / 0.035° 200 Hz 0.05 m - 0.3 m 4x trigger and event marker

RIEGL VUX-1

- High-accuracy ranging
- Survey grade measurement
 - Accuracy/Precision 10mm/5mm
- High laser pulse repetition rate of 550kHz for fast acquisition
- Fast scan speed up to 200 scans / sec
- Operating altitude of more than 1000ft
- Internal data storage capability of 240 GB
- Low power consumption of 60W while scanning

Archeological Sites

Golf Courses

Bridges

Applications of LiDAR integrated UAV's

Powerlines Pipelines

Forests

Architecture - Cultural Heritage

Caves Narrow Urban Areas

Gas Lines

Canyons

Wind Parks

Cliff Overhangs

Substations

Agricultural Land

Aquaducts

Port Facilities

ities

Valleys

Offshore Oil Rigs

Flood Zones

Complex Industrial Plants

Open pit mines

Power Plants

Wildlife Refuges

Traffic Accident Scenes

Danger areas

Racetracks

Example of Applications

Application: Precision Agriculture

Application: Forestry

Example of Applications

Application: Power Line Inspection & Infrastructure Monitoring

Application: Topography in Open-Pit Mining Areas

Study Area: Pielach

Study Area: Test Plan

Data Capture: Live Video Stream/Downlink

Data Acquisition: Flight Planning

Data Acquisition: Flight Block Overview

Data Acquisition: DSM Shading Detail

Data Capturing: Point Density

3D Point Cloud: Alluvial Forest

3D Point Cloud: Alluvial Forest Branches

3D Point Cloud: Steep Bank & Floodplain

Conclusion

RIEGL Laser Measurement Systems' latest developments, the RiCopter and the VUX-SYS, are the first systems in the ULS segment that are bridging the gap between airborne, mobile, and terrestrial laser scanning.

ULS systems are bringing professional survey-grade quality of laser scanning that will enable current and new users to be highly productive and to deliver 3D analytics much more efficiently.

Thank You and Any Questions?

